
RSS MOS pipeline

RSS MOS pipeline

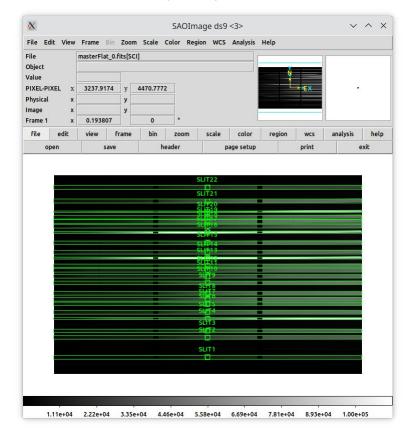
- See: https://github.com/mattyowl/RSSMOSPipeline
- Or: pip install RSSMOSPipeline --user

What does it do?

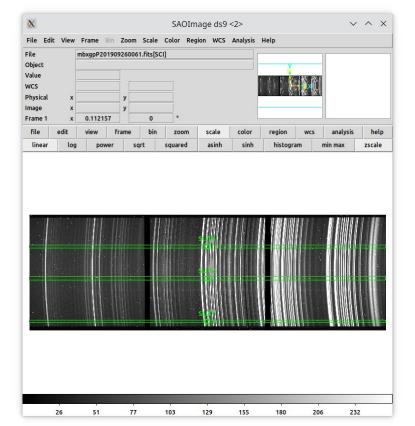
- A fully automated* pipeline, written in pure python, for extracting wavelength calibrated
 1d spectra from RSS MOS or longslit observations
- To see available options for the main pipeline script, run rss_mos_reducer -h
- Steps:
 - make master flats
 - cut into slitlets (using the master flat if MOS) or pseudo-slits (by identifying object traces in longslit data)
 - apply the flat field
 - o find the 2d wavelength solution and rectify 2d spectra
 - extract and stack all the 1d spectra (or stack the 2d spectra and extract 1d spectra)

(* if a reference wavelength calibration model has already been made - see the README.md file in the repository for the current list)

How to run

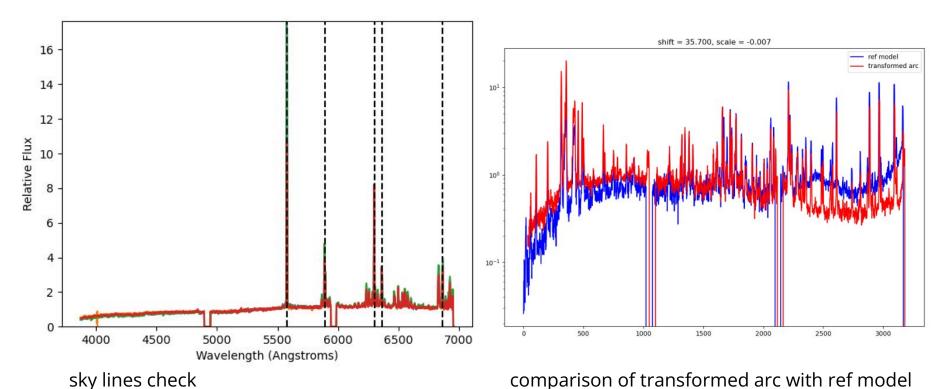

- Download the product data for your observations if you want to play with some MOS data, there are a couple of masks worth of cluster observations here:
 https://www.dropbox.com/s/61d1hhuww48tt2v/J0034RSSData.tar.gz?dl=0
- Check what masks are available:
 - o e.g. rss mos reducer product reduced list

```
2022-11-15 07:37:49,139 - RSSMOSPipeline - INFO - started: 2022-11-15T07:37:49.139582
2022-11-15 07:37:49,139 - RSSMOSPipeline - INFO - parameters: Namespace(rawDir='product', reducedDir='reduced', maskName='list', threshold=0.1, longslitThreshold=2.0, iterativeMethod=False, subFrac=0.8, exclude Masks='', extensionsList='all', skipDone=False)
2022-11-15 07:37:49,139 - RSSMOSPipeline - INFO - Reading image headers (cache file location: product/imageInfo.pkl)
2022-11-15 07:37:49,139 - RSSMOSPipeline - INFO - Reading image headers (cache file location: product/imageInfo.pkl)
2022-11-15 07:37:49,139 - RSSMOSPipeline - INFO - Reading image headers (cache file location: product/imageInfo.pkl)
2022-11-15 07:37:49,139 - RSSMOSPipeline - INFO - Reading image headers (cache file location: product/imageInfo.pkl)
2022-11-15 07:37:49,139 - RSSMOSPipeline - INFO - Reading image headers (cache file location: product/imageInfo.pkl)
2022-11-15 07:37:49,139 - RSSMOSPipeline - INFO - Reading image headers (cache file location: product/imageInfo.pkl)
2022-11-15 07:37:49,139 - RSSMOSPipeline - INFO - Parameters: Namespace(rawDir='product', reduced', maskName='list', threshold=0.1, longslitThreshold=2.0, iterativeMethod=False, subFrac=0.8, excluded and substance in the product of the parameters of the paramet
```


- Reduce your chosen mask (in this case has 4 x exposures):
 - o rss_mos_reducer product reduced ACT-CL_J0034.4+0225_P002131N01
 [takes 11 min on my laptop]
- Or to use iterative sky subtraction:
 - o rss_mos_reducer product reduced ACT-CL_J0034.4+0225_P002131N01 -i [takes 14.5 min on my laptop]
- You can also do, e.g., rss_mos_reducer product reduced all

Slit or object identification

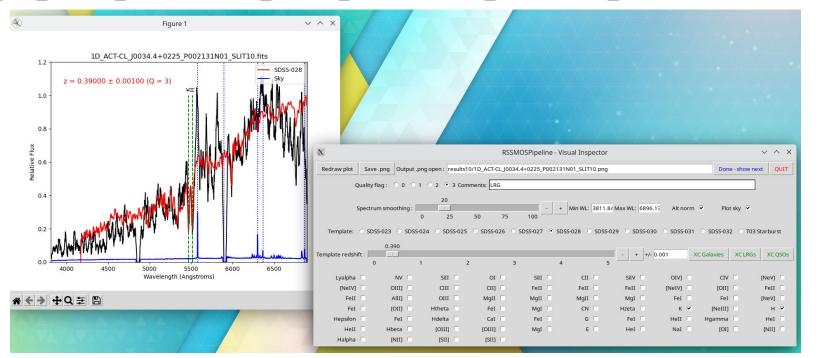
Check on master flats (MOS)


or object frames (longslit)

Diagnostics

- Log file is written to the current working directory
- Sky line based wavelength calibration check results:
 - e.g.
 reduced/ACT-CL_J0034.4+0225_P002131N01/diagnostics/skyWavelengthC
 alibCheck.csv
- Number of arc features identified per slit:
 - e.g.
 reduced/ACT-CL_J0034.4+0225_P002131N01/diagnostics/wavelengthCali
 bDiagnostics.csv
- The diagnostics/ directory also contains plots of:
 - o comparison of transformed arc with ref model arc spectrum
 - transformed arc spectra with labelled features
 - wavelength calibration model prediction with arc lines wavelengths marked
 - sky spectra with known sky line positions marked
 - o etc.

Diagnostics



comparison of transformed arc with ref model

Inspecting spectra

Tool for plotting spectral with templates overlaid (ancient code) - e.g.

cd reduced/ACT-CL_J0034.4+0225_P002131N01/1DSpec_2DSpec_stackAndExtract/
rss_mos_visual_inspector 1D_ACT-CL_J0034.4+0225_P002131N01_SLIT*.fits results

Final comments

Caveat:

- Published results using this pipeline (to my knowledge) only concern getting redshifts of galaxies (see <u>Hilton et al. 2018</u>, <u>2021</u>)
- Things that could be done:
 - Implement spectrophotometric calibration
 - Parsing slit mask XML file, to help with finding slits, and adding RA, dec coords to headers of 1D spectra
 - Parallelisation (not much benefit versus effort)
 - Make a more modern visual spectrum inspector, and add new cross correlation redshift code (or find one to use instead)
 - More docs

Bugs:

- Feel free to contact me with bug reports / requests for help (e.g. adding extra ref arc models)
- The code should be fairly easy to hack away at and improve it's pure python