PHOTOMETRY OF SOLAR SYSTEM BODIES WITH SALT

ANJA GENADE ag@saao.ac.za

SALT WORKSHOP 2022

South African

Foundation

- 1. Quick Introduction to Centaurs
- 2. Observing Centaurs
- 3. Observing Centaurs with SALT+SALTICAM
- 4. Photometry with SALTICAM
 - **o SALTICAM vs Illumination Pattern**
 - Flat-fielding
 - Let's count some photons!

What are Centaurs?

Just look at them go!

It's a MATCH, SALTICAM!

Mag Limit Movement

Centaurs are faint, M_v ~ 21.7

SALTICAM is the only instrument that can reach this magnitude.

No need to track the motion of the centaur. SALTICAM CCD has a (unbinned) pixel size of ~0.14".

SALTICAM for Science

Goal: Color and activity

Tegler (2008)

Tegler et al. (2016)

Jewitt (2009)

Accurate absolute photometry with SALTICAM is difficult.

SALTICAM vs Illumination Pattern

Standard Data Reduction

DARK

BIAS

FLAT

For SALTICAM:

According to <u>SALT Proposal</u> <u>Call Document</u>, test show that biases cannot be used. Data is corrected using the overscan level with the standard pipeline.

Dark current $< 1 e^{-1}$ per pixel per hour.

Calibration screen flats OR Twilight flats

Raw Image/Master Flat

HOW TO FLAT-FIELD

According to Kniazev & Vaisanen, 2011

For best results (0.05 \leq magnitude accuracy \leq 0.1 mag), two-step flat-fielding is suggested:

1. Low-frequency flats to correct for illumination pattern

2. High-frequency flats to correct for pixel-to-pixel variations

Step 1: Illumination Pattern

Step 2: Illumination Pattern Correction

IMAGE

median(IMAGE, radius=25.5 px)

Step 3: Master Flat

Result

6.3e+02 6.5e+02 6.7e+02 6.8e+02 7e+02 7.2e+02 7.4e+02

Remnants are still visible, but the majority of the background gradient is now smooth.

Photometry Pipeline

Astrometry.net for WCS information

2. Source Extractor

3. Text output of detected sources (x,y,RA,DEC)

5. Aperture Photometry

4. Cross-match with Stellar Catalogs

Aperture Photometry

$$m \pm \delta m_{inst} = -2.5 \log(S \pm N)$$

$$S = \left(F_{targ} - \left(F_{sky} \cdot A_{ap}\right)\right) / t_{exp}$$

$$N = \sqrt{St_{exp}} + A_{ap} \left(1 + \frac{A_{ap}}{A_{an}}\right) \left(F_{sky} + RN^2\right)$$

$$ZP = M_{Cat} - m_{inst}$$

Average Zero Point

Use photometry of point sources to determine zero points across the science FoV

< 8'x8' FoV

Sigma-clip ZPs

Only bright stars

1000

Photometric Calibration

N

· ·

众

0

69

¢

0 1/1

1/

0

6

Thank you!